1,194 research outputs found

    Hang Dai Menu 2017

    Get PDF
    Hang Dai is a welcome change from the bog-standard Chinese restaurant. They’ve kept the fun of a friendly feast and made it different and more delicious. It’s not quite a full reprieve for an amazing 4,500-year-old food culture, but it’s a good start. Irish Timeshttps://arrow.tudublin.ie/menus21c/1245/thumbnail.jp

    Hang Dai Restaurant Drinks Menu 2017

    Get PDF
    Hang Dai is a welcome change from the bog-standard Chinese restaurant. They’ve kept the fun of a friendly feast and made it different and more delicious. It’s not quite a full reprieve for an amazing 4,500-year-old food culture, but it’s a good start. Irish Timeshttps://arrow.tudublin.ie/menus21c/1246/thumbnail.jp

    Adaptive Feature Interpolation for Low-Shot Image Generation

    Full text link
    Training of generative models especially Generative Adversarial Networks can easily diverge in low-data setting. To mitigate this issue, we propose a novel implicit data augmentation approach which facilitates stable training and synthesize high-quality samples without need of label information. Specifically, we view the discriminator as a metric embedding of the real data manifold, which offers proper distances between real data points. We then utilize information in the feature space to develop a fully unsupervised and data-driven augmentation method. Experiments on few-shot generation tasks show the proposed method significantly improve results from strong baselines with hundreds of training samples.Comment: ECCV'22. Code available at https://github.com/dzld00/Adaptive-Feature-Interpolation-for-Low-Shot-Image-Generatio

    Modelling of Orthogonal Craniofacial Profiles

    Get PDF
    We present a fully-automatic image processing pipeline to build a set of 2D morphable models of three craniofacial profiles from orthogonal viewpoints, side view, front view and top view, using a set of 3D head surface images. Subjects in this dataset wear a close-fitting latex cap to reveal the overall skull shape. Texture-based 3D pose normalization and facial landmarking are applied to extract the profiles from 3D raw scans. Fully-automatic profile annotation, subdivision and registration methods are used to establish dense correspondence among sagittal profiles. The collection of sagittal profiles in dense correspondence are scaled and aligned using Generalised Procrustes Analysis (GPA), before applying principal component analysis to generate a morphable model. Additionally, we propose a new alternative alignment called the Ellipse Centre Nasion (ECN) method. Our model is used in a case study of craniosynostosis intervention outcome evaluation, and the evaluation reveals that the proposed model achieves state-of-the-art results. We make publicly available both the morphable models and the profile dataset used to construct it

    Statistical Modelling of Craniofacial Shape

    Get PDF
    With prior knowledge and experience, people can easily observe rich shape and texture variation for a certain type of objects, such as human faces, cats or chairs, in both 2D and 3D images. This ability helps us recognise the same person, distinguish different kinds of creatures and sketch unseen samples of the same object class. The process of capturing this prior knowledge is mathematically interpreted as statistical modelling. The outcome is a morphable model, a vector space representation of objects, that captures the variation of shape and texture. This thesis presents research aimed at constructing 3DMMs of craniofacial shape and texture using new algorithms and processing pipelines to offer enhanced modelling abilities over existing techniques. In particular, we present several fully automatic modelling approaches and apply them to a large dataset of 3D images of the human head, the Headspace dataset, thus generating the first public shape-and- texture 3D Morphable Model (3DMM) of the full human head. We call this the Liverpool-York Head Model, reflecting the data collection and statistical modelling respectively. We also explore the craniofacial symmetry and asymmetry in template morphing and statistical modelling. We propose a Symmetry-aware Coherent Point Drift (SA-CPD) algorithm, which mitigates the tangential sliding problem seen in competing morphing algorithms. Based on the symmetry-constrained correspondence output of SA-CPD, we present a symmetry-factored statistical modelling method for craniofacial shape. Also, we propose an iterative process of refinement for a 3DMM of the human ear that employs data augmentation. Then we merge the proposed 3DMMs of the ear with the full head model. As craniofacial clinicians like to look at head profiles, we propose a new pipeline to build a 2D morphable model of the craniofacial sagittal profile and augment it with profile models from frontal and top-down views. Our models and data are made publicly available online for research purposes
    • …
    corecore